Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 12(1)2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936473

RESUMO

BACKGROUND: Enteroviruses are a group of common non-enveloped RNA viruses that cause symptoms ranging from mild respiratory infections to paralysis. Due to the abundance of enterovirus infections it is hard to distinguish between on-going and previous infections using immunological assays unless the IgM fraction is studied. METHODS: In this study we show using Indirect ELISA and capture IgM ELISA that an IgG antibody response against the nonstructural enteroviral proteins 2A and 3C can be used to distinguish between IgM positive (n = 22) and IgM negative (n = 20) human patients with 83% accuracy and a diagnostic odds ratio of 30. Using a mouse model, we establish that the antibody response to the proteases is short-lived compared to the antibody response to the structural proteins in. As such, the protease antibody response serves as a potential marker for an acute infection. CONCLUSIONS: Antibody responses against enterovirus proteases are shorter-lived than against structural proteins and can differentiate between IgM positive and negative patients, and therefore they are a potential marker for acute infections.


Assuntos
Anticorpos Antivirais/sangue , Enterovirus/enzimologia , Enterovirus/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Peptídeo Hidrolases/imunologia , Proteases Virais 3C , Doença Aguda , Adulto , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos , Biomarcadores/sangue , Cisteína Endopeptidases/imunologia , Infecções por Enterovirus/diagnóstico , Infecções por Enterovirus/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Lactente , Camundongos , Camundongos Endogâmicos C57BL , Peptídeo Hidrolases/classificação , Proteínas Virais/imunologia
2.
iScience ; 19: 340-357, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31404834

RESUMO

The group B Coxsackieviruses (CVB), belonging to the Enterovirus genus, can establish persistent infections in human cells. These persistent infections have been linked to chronic diseases including type 1 diabetes. Still, the outcomes of persistent CVB infections in human pancreas are largely unknown. We established persistent CVB infections in a human pancreatic ductal-like cell line PANC-1 using two distinct CVB1 strains and profiled infection-induced changes in cellular protein expression and secretion using mass spectrometry-based proteomics. Persistent infections, showing characteristics of carrier-state persistence, were associated with a broad spectrum of changes, including changes in mitochondrial network morphology and energy metabolism and in the regulated secretory pathway. Interestingly, the expression of antiviral immune response proteins, and also several other proteins, differed clearly between the two persistent infections. Our results provide extensive information about the protein-level changes induced by persistent CVB infection and the potential virus-associated variability in the outcomes of these infections.

3.
J Muscle Res Cell Motil ; 36(6): 395-404, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26613733

RESUMO

The skeletal muscle injury triggers the inflammatory response which is crucial for damaged muscle fiber degradation and satellite cell activation. Immunodeficient mice are often used as a model to study the myogenic potential of transplanted human stem cells. Therefore, it is crucial to elucidate whether such model truly reflects processes occurring under physiological conditions. To answer this question we compared skeletal muscle regeneration of BALB/c, i.e. animals producing all types of inflammatory cells, and SCID mice. Results of our study documented that initial stages of muscles regeneration in both strains of mice were comparable. However, lower number of mononucleated cells was noticed in regenerating SCID mouse muscles. Significant differences in the number of CD14-/CD45+ and CD14+/CD45+ cells between BALB/c and SCID muscles were also observed. In addition, we found important differences in M1 and M2 macrophage levels of BALB/c and SCID mouse muscles identified by CD68 and CD163 markers. Thus, our data show that differences in inflammatory response during muscle regeneration, were not translated into significant modifications in muscle regeneration.


Assuntos
Inflamação/patologia , Músculo Esquelético/patologia , Regeneração/fisiologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Doenças Musculares/patologia
4.
Diabetes ; 62(8): 2834-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23610061

RESUMO

Precise regulation of ß-cell function is crucial for maintaining blood glucose homeostasis. Pax6 is an essential regulator of ß-cell-specific factors like insulin and Glut2. Studies in the developing eye suggest that Pax6 interacts with Mitf to regulate pigment cell differentiation. Here, we show that Mitf, like Pax6, is expressed in all pancreatic endocrine cells during mouse postnatal development and in the adult islet. A Mitf loss-of-function mutation results in improved glucose tolerance and enhanced insulin secretion but no increase in ß-cell mass in adult mice. Mutant ß-cells secrete more insulin in response to glucose than wild-type cells, suggesting that Mitf is involved in regulating ß-cell function. In fact, the transcription of genes critical for maintaining glucose homeostasis (insulin and Glut2) and ß-cell formation and function (Pax4 and Pax6) is significantly upregulated in Mitf mutant islets. The increased Pax6 expression may cause the improved ß-cell function observed in Mitf mutant animals, as it activates insulin and Glut2 transcription. Chromatin immunoprecipitation analysis shows that Mitf binds to Pax4 and Pax6 regulatory regions, suggesting that Mitf represses their transcription in wild-type ß-cells. We demonstrate that Mitf directly regulates Pax6 transcription and controls ß-cell function.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Mutação , Animais , Glicemia/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ativação Transcricional
5.
Int J Dev Biol ; 53(7): 983-91, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19378260

RESUMO

The mouse mutant wavy tail Tg(Col1a1-lacZ)304ng was created through transgene insertion and exhibits defects of the vertebral column. Homozygous mutant animals have compressed tail vertebrae and wedge-shaped intervertebral discs, resulting in a meandering tail. Delayed closure of lumbar neural arches and lack of processus spinosi have been observed; these defects become most prominent during the transition from cartilage to bone. The spina bifida was resistant to folic acid treatment, while retinoic acid administration caused severe skeletal defects in the mutant, but none in wild type control animals. The transgene integrated at chromosome 11 band D, in an area of high gene density. The insertion site was located between the transcription start sites of the Rpl23 and Lasp1 genes. LASP1 (an actin binding protein involved in cell migration and survival) was found to be produced in resting and hypertrophic chondrocytes in the vertebrae. In mutant vertebrae, temporal and spatial misexpression of Lasp1 was observed, indicating that alterations in Lasp1 transcription are most likely responsible for the observed phenotype. These data reveal a yet unappreciated role of Lasp1 in chondrocyte differentiation during cartilage to bone transition.


Assuntos
Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese/genética , Proteínas de Homeodomínio/genética , Proteínas de Neoplasias/genética , Coluna Vertebral/embriologia , Coluna Vertebral/metabolismo , Animais , Diferenciação Celular/genética , Condrogênese/fisiologia , Colágeno/genética , Proteínas do Citoesqueleto , Feminino , Ácido Fólico/farmacologia , Expressão Gênica , Proteínas de Homeodomínio/fisiologia , Proteínas com Domínio LIM , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Mutagênese Insercional , Proteínas de Neoplasias/fisiologia , Osteogênese/genética , Osteogênese/fisiologia , Fatores de Transcrição Box Pareados/genética , Fenótipo , Gravidez , Coluna Vertebral/anormalidades , Coluna Vertebral/citologia , Cauda/anormalidades , Cauda/citologia , Cauda/embriologia , Cauda/metabolismo , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...